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1. INTRODUCTION

Unsteady motion of rate dependent materials under high speed of
loading is of fundamental theoretical and practical interest. Such a
medium is inherently dissipative so that the waves propagating in the
material are both attenuated and dispersed.

To study the phenomena of wave propagation, a thorough knowledge
of the behavior of the material under investigation is essential. One
of the drawbacks of the existing theories in thermoviscoelasticity and
thermoelasticity is the prediction of infinite thermal speed of
propagation. Various investigators1 have attempted to modify the
classical heat conduction law to alleviate this paradoxial result.

Bogy and Naghdi (1969) considered a generalized axiomatic theory of heat
conduction in rigid solids by allowing the constitutive relations to
depend on éhe temperature~rate. In this treatise, a general nonlinear
thermomechanical theory of a temperature-rate dependent thermoviscoelastic
material is formulated using the modern techniques of axiomatic continuum
mechanics and laws of thermodynamics. The formulation for a temperature-
rate dependent thermoelastic medium is easily deduced from the general
theory by neglecting certain strain-rate effects.

One-dimensional linear spatial gradient constitutive relations
are presented to illustrate the basic concepts. Dispersion relations
and asymptotic behaviors of the linearized longitudinal waves will be
discussed, and the results illustrated graphically. It will also be
shown that the temperature-~rate dependent theories presented here

predict finite speeds of propagation due to heat conduction.

1See, e.g., Chester (1963), Gurtin and Pipkin (1969), Horie (1970),
Kaliski (1965), and Ulbrich (1961).




2. THEROMODYNAMIC FORMULATION

The fundamental equations of mechanics and thermodynamicsz, in

Lagrangian form, are the continuity equation

Py =PI (2.1)

the Kirchoff-Piola equation of motion

) éi =2a,atPoF v (2.2)
equation of balance of energy
o e = 9 ,afas " Ba,atPoC TP T (2.3)
and moment of momentum equation
Yi,aZa3 = Yy, Fas (2.4)

where p(YA,t) denotes the material density, p 4 p(YA,to). yi(YA,t) is

0]

the deformation field, J(Y,,t) &y >0, q 4 Qi(YA,t) is the

ol
particle velocity, ZAi(YA,t) is the Kirchoff-Piola stress tensor,
Fi(YA,t) is the body force per unit mass, e(YA,t) is the specific
internal energy per unit mass, BA(YM,t) is the heat flux vector per unit
original area due to conduction, C is the internal heat generation per
unit mass per unit time, comma and superposed dot denote partial
differential with respect to the reference coordinate system YA and

time t, respectively, and t_ is the original time of reference.

0

2See, e.g., Green and Naghdi (1968).

2



We now postulate the local entropy inequality, deduced from the

Clausius-Duhem inequality, in the following form:

. > pOC BA
P08 = = 7 ,a (2.5)

where s is the specific entropy per unit mass. Using the conservation

of energy (2.3), the inequality (2.5) may be re-written as

(a+ T s) = q, (2.6)

. . 1
(e =T =0 1,01 TTEA T

Po A Tra v

where

e~-Ts (2.7)

]
]

is the specific Helmholtz free energy per unit mass.

To complete the thermodynamic formulation for a given material,
specific knowledge of the constitutive relations characterizing the
behavior of the medium is required. In the following section we will
introduce such phenomenological relations for a temperature-rate

dependent thermoviscoelastic material.



3. THE THREE-DIMENSIONAL TEMPERATURE-RATE DEPENDENT

THERMOVISCOELASTIC CONSTITUTIVE RELATIONS

The thermoviscoelastic material considered in this treatise may be
characterized by the response functions: Helmholtz free energy a,

entropy 8, internal energy e, heat flux vector BA, and the Kirchoff-

Piola stress tensor ZAio The response functions, in turn, are assumed
to depend on the generalized thermodynamic variables: temperature T,

temperature-rate f, temperature gradient T, deformation gradient Y,

A’ ,A'

and velocity gradient 94 A Therefore, we may write
14

a= a (T, T, T,A, yi,A’ qi,A) ’

s = s (T, i, T,A, yl,A’ ql’A) ’

e= e (T, T, Toar ¥ ar 9 a) v (3.1)
Ba = Bp(T T, Trgr Y5 57 9 8)
Zag = Zas (T T, Trgr ¥5,8, 94,80

3 which states

where we have made use of the principle of equipresence
that an independent variable present in one constitutive relation should

appear in all unless it is excluded by the principles of continuum

mechanics and laws of thermodynamics.

3.1. Consequences of the Second Law of Thermodynamics
For a thermoviscoelastic material whose constitutive relations are

characterized by (3.1l), the entropy inequality (2.6) becomes

3See, e.g., Truesdell and Toupin (1960).

4



da . da Ja
o, (==+s) T+ [p,o—=-2.)q +p, —=T
0 3T 0] ayi,A Ai i,A 0 ah
da . Jda - 1 <
+ o EET—-T,A + o SET__.qi,A + T BA T,A -0 . (3.2)
A i,A

Following the procedure of Coleman and Noll (1963), we require this
inequality to hold for all thermodynamically admissible processes and

independent variations of &i i'A’ and &i which appear linearly with

,A

coefficients that are independent of these variables. Therefore,

3% = 37 (e -Ts) =0 ,
aT aT
=%, etTe =0, (33
'a 'a
CE = C (e -=Ts) =0 .

%a; A %9 p

Hence, the Helmholtz free energy a is independent of f, T,., and a;
r

A A

and the entropy inequality (3.2) reduces to

da . oa 1 <
po (BT + s) T + (po ayi N - ZAi) qi,A + T BA T'A -0 . (3.4)
r

The constitutive relations (3.1l) become, in view of (3.3),

a = a (T, yi'A) ’

s = s (T, T, Trar Yy ar 9.2)

e = e (T, T, Toar Y5 oar 95 a) ¢ (3.5)
Bp = By (Tv T, Tege ¥5,57 93,80

Iy = Ep, (T T, Trgr Y550 95,5 -



3.2. Invariance Requirements Under Superposed Rigid Body Motion

In this treatise, it will be assumed that the constitutive relations
are form invariant with respect to a rigid body motion superposed on the
spatial frame of reference." If Qij denotes a time-dependent proper

orthogonal transformation, then

y; = Qij(t) yj + pi(t) ' (3.6)

where Y and y; denote the spatial coordinates in the two reference
frames, respectively, and P denotes the translation of the O-frame with

respect to the O*-frame (Figure 3.1).

medium

O*

Figure 3.1l. Change of the coordinate systems

By definition, the proper orthogonal tensor Qij satifies the

following relations

“see, e.g., Green and Rivlin (1957). It should be noted that this
form of the invariance principle under superposed rigid body motion is
slightly different from the so-called principle of frame indifference
proposed by Noll (1955) who included inversion in the admissible
orthogonal transformations.



Qk Uk = %i %j = Si5 ¢
(3.7)
det Qij =1 .
Consequently,
Qix %k = 7 Qux %Yk ¢
(3.8)

Qi %3 T T i Ky -

A quantity is said to be frame indifferent or objective if it is
independent of the rigid body motion of the reference frame. For a
scalar S, a vector Vi’ and a second-order tensor Tij in the O~frame, we

must have in the O*-frame

* = * = * =
S S ’ Vi Qij Vj ’ Tij Qi an T o (3.9)
Consider
* =
yi,A Qij yj,A (3.10)

by (3.6), and form the following

* * =
Yi,a¥i,8° %m Ym,a %n Yn,s

Yn,2 Ym,B (3.11)

upon using (3.7). Thus, the so-called Cauchy-Green strain tensor GAB

defined by

i}
aB ~ Yi,a Yi,B (3.12)



is objective under (3.6). It is well known that for J > 0 any objective

function which depends on y;  can at most be a function of the six
r

elements of GAB' In a similar fashion we may demonstrate that éAB is

the objective quantity replacing 94 ac Consider
[

*
9i,a

* = Q.. V. + Q.. g, .
qllB Ql] yJIB Ql] quB

Multiplying the first equation by y; B and the second one by y; a and
r 14

adding yields, upon using (3.10),

q;,A y;,B + y;,A qI,B = Qij yj,B (Qim ym,,A + Qim qm,A) *
Q5 ¥5,a Q) Yo, ¥ Qm 9,8’
=95 éim Yma ¥y, " ¥i,8%,a"

* Q45 Qi Y5,8 ¥m,8 " ¥1,a %, ° (3.13)

by employing (3.7). And finally, in view of (3.8), the right hand side

of (3.13) is further simplified to give

y + Yy, a4 5 ! (3.14)

* * + y* * =
G,a¥i,B " ¥i,a%,e” %i,a%i,B i,a %4,
which simply states

G* =G . (3.15)



One may verify Equation (3.15) by direct differentiation of (3.12). 1In

view of the restrictions imposed by the invariance principle of superposed

rigid body motion, the constitutive relations (3.5) reduce to

a = a (T, GAB) '

s = s (T, T, T, ¢ Gapr éAB) ’
e = e (T, T, Typr Gppr Cpp)
B, = B,(T, T, Ty v Gppe éAB) '
Pog = Pag (T T, T, s Gapr Gpp)

(3.16)

where for convenience we have introduced the Piola stress tensor P

defined by the following relation

3.3. Material Symmetry Restrictions
Solid-like materials may possess certain symmetry properties
that their constitutive response functions are form—-invariant (in
reference frame) with respect to a time-independent group S which
subgroup of the full orthogonal group of transformations Q. This
certain restrictions on the response functions. For example, the

functions a(T, GAB)' s(T, T, T,., GAB' GAB) and e(T, T, T'A’ G

A AB’

AB

(3.17)

such
some
is a
imposes
response

GAB)

should be scalar invariants under the symmetry group S. According to

Wineman and Pipkin (1964), each of these scalar invariant functions can

always be expressed explicitly as a single-valued scalar function of an

irreducible integrity basis of its arguments under 5. For an isotropic



material, S is the full orthogonal group Q and the irreducible integrity

bases® for each of the sets (T, GAB) and (T, T, T'A’ GAB' GAB) under Q

are:
T , Gpp ¢ GapGga ¢ Gpp Coo Gop v (3.18)
and
T , T ' Gap
Cap ®pa » Cap ®pc Cca v Tepg Trg
®am Tra Trm + Cpp Sgc Trg Trp ! éAA
éAB .BA ! éAB éBC éCA ! C.;z:ua Trp Trp
éAB éBc Trc Trg + Cap .BA ¢+ G éBc éCA
éAB ®gc Cca S Cge éCD éDA r Cap éBc re Tra
Cag Trg Tre éCD éDA ' éAB Trg T’c Sep “pa ¢ GAB Cpc éCD éDE Trg Tra
(3.19)
respectively.
The canonical form of the heat flux vector BA(T, f, T’M' GMN' éMN)
and Piola stress tensor-PAB(T, f, T’M' GMN éMN) may also be obtained

using the procedure suggested by Wineman and Pipkin (1964). They have
shown that a tensor-valued response function of arbitrary rank, depending
on an arbitrary number of tensor variables of arbitrary ranks, can be

expressed as a linear combination of the basic form-invariants under S.

SThe minimum isotropic integrity basis for an arbitrary number of
three-dimensional second-order symmetric and skew-symmetric tensors, and
axial and absolute vectors, under the full orthogonal group, are given
by smith (1965).

10



We shall adapt, however, the procedure of Rivlin (1959) in imposing

material isotropy on the forms of BA(T, T, T'M' N’ GMN) and

PAB(T’ T, T'M' N GMN)-
Consider an arbitrary, second-order, symmetric tensor WAB and

define a scalar quantity Y by
Y P . (3.20)

According to Wineman and Pipkin (1964), the scalar function ¥ can be

expressed by
N
Y= ) F,G, , (3.21)

where G, are the elements (linear in ¥Y__) of the irreducible integrity

B AB
basis of T, %, T'A' GAB’ éAB' WAB under Q, and FB are single-valued
functions of the irreducible integrity basis of T, i, T’A’ GAB' éAB
under Q. Therefore,
P_ == ; F (BGB + g } (3.22)
AB 2 B BWAB BWBA ' :

One may also obtain the constitutive relation for the heat flux

vector BA(T’ i, T,., G

VN GMN) by forming the scalar product of BA with

M
an arbitrary vector and then follow the above procedure in a similar
manner.

In the subsequent sections we make use of the polynomial canonical

form of the constitutive relations when we consider the one-dimensional

linear spatial gradient theory. 11



4., THE ONE-DIMENSIONAL, LINEAR SPATIAL GRADIENT, TEMPERATURE-

RATE DEPENDENT, THERMOVISCOELASTICITY

Since we are primarily interested in small amplitude, longitudinal
wave propagations, we consider, in this section, a one-dimensional
linear spatial gradient theory of the thermoviscoelastic meterial

formulated in the previous section.

4.1. Linear Gradient Assumption
To the first order approximation in the spatial gradient quantities,
the one-dimensional polynomial canonical representation of the

constitutive relations (3.16), using (3.17), reduce to

Py (T, T, Tyr Gppo éll) = e, (T, T) + e, (T, T) € + e, (T, T ¢ , (4.1)
B(T, T, Tyr Gy c';ll) = - x(T, T) T, , (4.2)
T(T, T, Tyr Gy c';ll) =-qm(T, T) + u(T, T) € +n(T, T € , (4.3)

where

Eég’i":L:’/a_lI'lé%%"l ,
and (4.4)
ca % g élléiq._
cT%w. T3 X
S O

are the Lagrangian strain and strain rate, respectively, the coordinate

systems x and X correspond to Yy and Yl, respectively, the subscript X

12



denotes partial differentiation with respeét to the spatial coordinate,
B denotes the heat flux vector in the X-~-direction, and £ is the
longitudinal stress.

One may show that 7 and y are independent of T. Let us substitute
(4.2) through (4.3) in the one~dimensional form of the entropy

inequality (3.4):

(-7 +ue- aa)é-po(s+a—ai'+né2+%|<'r3

po e 5T o . (4.5)

2
X
This inequality must hold for all thermodynamically admissible processes

and independent variations of é, f, and T Therefore, we conclude that

X

Ja

- T+ ye - po e =0 , (4.06)
and

o . (4.7)

But a is independent of T and thus 7 and U must also be independent of

T. The entropy inequality (4.5), in view of (4.6), reduces to
n e+ E-K T, - (s + ——J & z 0 (4.8)
T o : *

Equation (4.6), upon integration with respect to € and to the first

order, yields the following

p, &= Y(T) - w(T) ¢ , (4.9)

0

where y is the constant of integration. Using Equations (4.1) and (4.9)

in (2.7), we get
13



1l
o Fpo(e - a)

Sle (T, T - YT + [e (T, D) + 7(DM] € + ey(T, D) &} . (4.10)
The set (4.1) through (4.3) and (4.8) through (4.10) represents the
thermodynamic formulation of the one-dimensional temperature-rate

dependent thermoviscoelastic problem under consideration.

4.2. Basic Egquations
The equations of motion and balance of energy (2.2) through (2.3)
in the one dimensional form and in the absence of internal heat generation

and body forces are,

©
o
Qe
]
™
-

(4.11)

po e = qu - BX o

Substituting (4.1) through (4.3) into (4.11) gives, to the first order

of approximation,

- - + =
po utt uu nu T T o ,

(4.12)

+ + + + e . -k T, =
() + M Upr * € Ui Y ®r Te T Cp Tee ~ K Tyx =0+

where u is the longitudinal displacement and subscripts denote partial

differentiation.

4.3. Characteristic Motions
To obtain the characteristic wave speeds, consider a discontinuity,

represented by the curve S, propagating with the speed c in the Xt-plane

14



(Figure 4.1), and let ¢(X, t) denote any field variable having the

values ¢+ and ¢_ across the curve S with ¢, = ¢_ whenever ¢ is continuous.

Figure 4.1l. Discontinuous front

We further assume that although ¢ may be discontinuous across S,

the time rate of change ¢+ (or ) along S may be evaluated according to

6

Hadamard's lemma  as follows

6¢i _ B@i . 8¢i 13

st ot €3 - (4.13)
Therefore,

§d 3% o¢

[g;ﬂ = [gzl + c [3;] ’ (4.14)

where [] denotes the jump across S

A
(91 S ¢, - o_ .

6See, e.g., Truesdell and Toupin (1960).

15



Let the temperature T and its first order derivatives, and the

displacement u along with its first and second order derivatives, be

continuous across S, Z.€.,

[T} = [ul]l = 0
[T = [T, = [ul-= [u] =
and
fu  J = [u,l = lu,l= 0

Applying (4.14) to (4.15) gives

[Ttt] + c [TXt] =0 ,
[TXt] + c [TXX] =0 ,
fu e d +c [uttx] =0 ,
[utXt] + c [utXX] =0 ,
[ugged * © Tugeel =0

Using (4.15), Equations (4.12) across S gives:

- n [uXXt] =0 ’

€op [Tegd — & [Typl + &y [ug, 1=

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Therefore all the third-order derivatives of the displacement, in light

of Equations (4.18) through (4.21), are continuous across S.

(4.16) through (4.17) and (4.22) may be re-written as:

16
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[Ttt] -c [Txx] =0 ,
(4.23)
eop [Teg) =% [Tyl =0 -
For nontrivial solutions, the determinant of the coefficients must
vanish. Therefore,
2
eOT c -k=0 ,
- w172 A
or c = (K/EOT) =c, - (4.24)

Expression (4.24) represents the characteristic speed of wave
propagation in the temperature-rate dependent thermoviscoelastic material
under consideration. Furthermore, this characteristic speed becomes
infinite as e, approaches zero, a well-known classical heat conduction

oT

result., Later on, we will also show that the characteristic speed 02

corresponds to the asymptotic phase velocity at high frequency.
4.4. Dispersion Relations of Linearized Longitudinal Wave Propagation
in an Initially Unstrained Thermoviscoelastic Material
In this section, we will employ the small perturbation technique to
linearize the basic equatiocns (4.12). Consider small perturbations T'
and u' abouf some uniform equilibrium state T and u of the material such

that

=
"
M
+
e

(4.25)

Using (4.25) in the equations of motion and balance of energy (4.12), it

can be shown to the first order of T' and u':

17



pos ' ' - ' - n ' =
Tp Tx ¥ Po Yge ~ M Uy ~ M Uxe =0
(4.26)
oy ' o . L U ' + e ' =
€or Te ¥ € Tee ~ K Tygx ¥ (B * M vy v ey up, =0

where "bar" denotes quantities evaluated at the equilibrium state.

The set of linear partial differential equations (4.26), with
appropriate initial and boundary conditions, may be solved using standard
transform techniques or Fourier analysis. Instead of solving (4.26) for
specific values of initial and boundary conditions, we will derive the
digpersion relations and conditions under which stable waves may exist
and propagate in the positive X-direction.

Consider longitudinal propagation of planar disturbances of the

form

Tl

TO exp (iwt - kX) ,

(4.27)

u' = u, exp (iwt - kX) ,

where w is the frequency, k is the complex wave number, and TO and u0

are complex amplitudes. Substituting (4.27) into (4.26) yields

2. n k2 wilw. =0 ,

- R 2 -
-nk T, + {po (i) - u k o

0
(4.28)

- - . ] - 2 - - - . . _
{(eOT + et wi) wi - ¢ k°} TO - (e1 + m + e, wi) k wi u, = o .

For non-trivial solutions, the determinant of the coefficients must

vanish:

18



= - - . 2 L 2
T k (W +n wi) kKT - po(ml)

(6. + e wi) wi - Rk> -(e. + 71+ 6o

or ¥ ©or 1 2 wi) k wi

which yields

- - = .4 R -
Kk (4 +n wi) kK~ - {po Kwi+ (u+n wl)(eOT + et wi) +

- = ==, 2 . - - 3
+ T (e1 + T+ e, wi)} k° wi + G (eOT + eyn wi)(wi)” =0 . (4.29)

Considering a real frequency w of propagation in the positive

X-direction, the complex wave number k may be expressed as follows:
k = o+ %-i , (4.30)

where the attenuation factor o and the phase velocity ¢ are functions
of w. These are the dispersion relations. For a stable wave propagation
both o and c¢ must, however, be positive.

Equation (4.29) is satisfied if

4 2

(L+Fi) B - [¢(Fi)%2 + (L 4+ + ¢+ x) Fi +y + ¢] Fi H® +

+(+ ¢ F)(FD =0 ,

(4.31)
where
- 1/2
(u/p.)
W L (4.32)
u/n u/n

are the dimensionless frequency and complex wave number; and,

19



A T'"1
y = — , (4.33)
Po H K
ne
£ 22 , (4.34)
Po ¥
TR
A 0T
¢ = - ’ (4035)
Po ¥
-
X £ I _2 (4.36)
Po ¥

are dimensionless material constants. Equation (4.31) yields

_ Fi L\ 2 . .
Hi—{_—_-2(1+Fi) OFL)“+ (L+Cc+¢d+x) Fi+y+r1C 2
— - 1/2
t/[Tb(Fi)2+ (-l + 7+ ¢+ ¥ Fi+Y+C]2+4Y Fi+4X(Fi)2]} .
(4,37)+
The dimensionless form of (4.30) is
F .

where A and V are the non-dimensional attenuation factor and phase
velocity, respectively. Upon separation of the real and imaginary parts

of the Equations (4.37)  one may obtain

(ﬁ/po)l/2
¢, = Re (H+) R (4.39),

20



[

A +

vV, = — i3 = F/Im (H) , (4.40)
(u/po)

where only propagation in the positive X-direction has been considered,

(+) corresponds to the sign preceding the radical in (4.37) , and H_ is

given by (4.37)_.

4.4.1. Asymptotic Expansions

Attenuation factor A and phase velocity V must be positive at all
real frequencies for a stable propagation in the_positive X-direction.
To fulfill this requirement, certain restrictions can be imposed on the
dimensionless material constants v, 7, ¢, and X by studying the asymptotic
behaviors of A and V.

(1) In the case of low frequency waves, when F << 1, Equations

(4.37), can be approximated as follows:

Hy, S G5 [y + 2+ (L+c+6+x) Fit(y+0) ¢

2y . 1/2
+ (- + Fi + ... .
(Fr+ g+ ¢+ x+ T o Fi 1}
Hence, in view of (4.39)+ and (4.40),
1/2

- + T 3/2

a = (I5=F)  +o0rY (4.41)
1/2

- 2F 3/2

V+ = (;—4_——;9 + O(F ) ’ (4.42)

provided

21



y+¢g>0 , (4.43)

and
- 2
A_ =0+ 0(F) , (4.44)
1/2
vz (1+D +oe?h (4.45)
provided
1+% o . (4.46)

Combining (4.43) and (4.46), it follows that

z >0 . (4.47)

In view of the definitions (4.32) through (4.36) and (4.39)-(4.40),

the dimensional form of the expressions (4.41)-(4.42) and (4.44)-(4.45)

are
- = - - 1/2
He, + 7 (e + m
0, = [—2 L1 Wl + 0%, (4.48)
2 UK
- = 1/2
¢, = [——2EE 1 +owP (4.49)
U eOT + TrT(e1 + 7)
- 2
o_ =0+ 0(u) (4.50)
and

22



- m (e, + T)
o =+ L +owd . (4.51)
0 Po ot

We note that expressions (4.48) through (4.51) are independent of
the material constants n, ;05' and ;2. This is in accordance with the
physical intuition as one may expect that the effects of the rate of
strain and temperature are negligible at low frequency oscillation.

We also observe that c_ given by Equation (4.51) is independent of

the frequency w (asymptotic value) and may be expressed as follows:

+ )

>
(V)
N

/2 and c. denotes the wave

where c, is the elastic wave speed (ﬂ/po)1 3

1
speed due to the dependence on temperature of the constitutive relations.
_ This analysis suggests that the low frequency asymptotic wave speed in
a thermoviscoelastic material is always greater than that of the elastic
one.

(2) 1In the case of high frequency waves, when F >> 1, then

Equations (4.37)  can be approximated as follows:

Hi = {%-[¢(Fi)2 + (1l+z+ ¢+ y) Fi * ¢(Fi)2 +

1/2

T (-1l+Cc+¢+x)Fi+ ... .1[1 - %T + ...1} .
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Hence, in view of (4.39)+ - (4.40)+,

a =52 X. ol , (4.52)
2/%

v, = f/—g oy (4.53)

provided
L+x-0 and ¢>0 , (4.54)

and

RN Y e N Yo B (4.55)
v = emnt? 1oV (4.56)

The dimensional form of (4.52) - (4.53) and (4.55)- (4.56) may be

obtained by employing definitions (4.32) - (4.36) and (4.39) - (4.40),

a, = L2 0T, 0wy (4.57)
2 n vk éoi
c, = (R/ay; Y2 Low™ (4.58)
. 1/2
a_ = (——:-w) + O(w_l/z) ’ (4.59)
2 7
- 1/2 .
c_ = 6253-w) + oY% (4.60)
0



It is clear that expressions (4.57) through (4.60) depend on n, e and

2’
Eoé, which are the coefficients of the strain-rate and temperature-rate.
They are, however, independént of the elastic modulus ﬁ. Expression

(4.58), in light of (4.7), yields that

e.+>0 . (4.61)

We note that c, given by (4.58) is due to the temperature-rate
effects and is identical to the characteristic speed (4.24) obtained
earlier. Furthermore, the classical result of infinite wave speed due

to heat conduction may be deduced by simply setting e s equal to zero.

oT
One may also observe that although c_ given by (4.51) is an
asymptotic value, it is not a characteristic speed of the wave
propagation.
In carrying out these asymptotic expansions we treated H as a real

function of the variable (Fi) such that formally the expression for

H(Fi) contains only real coefficients.

4.4.2. Possible Physical Limitations

There might be certain physical restrictions on the material
constants. This may be best accomplished by drawing an analogy between
the thermoviscoelastic medium considered here and those of the classical
thermodynamics.

If one chooses I to correspond to the thermodynamic pressure p,

then

oL 2]
w=-GH v G .
€ o)
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and comparison with a thermally perfect material; e.g., for an ideal gas

(%%) = pR -- indicates that T > 0. Also from thermodynamics
o}
(B_e) = T(EP-) - p for any substance
v 3T’ v '
=0 for an ideal gas ’
= positive constant for van der Waals gas .

Therefore, using (4.1) and one dimensional form of the continuity

equation (2.1), one obtains, applying the above argument,

(g—jT =0, 89 =e 20 . (4.62)

> > >
Now since m - 0, m_ > 0, k = 0, and e, - 0, the definition (4.33) yields

T

1v

o . (4.63)

The specific heat at constant volume is defined by

c T '
\V]

A de
'\)—(

and is a positive quantity for most materials (cv > R for gases).
Therefore, the constitutive equation (4.1) yields, to the zeroth order

of the gradients,

dey _
P59 =ep >0 - (4.64)
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Employing (4.64) in the definition of 7 given by (4.34), we get
T >0 . (4.65)

Incorporating the results (4.43), (4.46), (4.47), (4.54), (4.63),

and (4.65) into one set, we obtain that

>

Y o ,

>0 ,

$>0 , (4.66)
and

L+x-0

for a stable wave propagation.
These restrictions were used in numerical computations aimed at

obtaining graphical illustrations of the dispersion relations.

4.4.3. Numerical Results and Graphs

Logarithmic values of the non-dimensional attentuation factor A and
the non-dimensional phase velocity V were cross~-plotted against the
dimensionless frequency F (Figures 4.2 through 4.17). The following
behaviors were observed:

(1) For the case of F < 10_3:

(a) Both attentuation factors A+ and A_, and the phase
velocity V+ are directly proportional to the sqguare

root of the frequency F. The phase velocity V_,

however, is independent of the frequency F.
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10 10 10 102 10’
F

Figure 4.2. Effect of material constant Yy on attenuation factor

A, of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
r =¢ = 0,01, x = 100
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Figure 4.3. Effect of material constant y on dispersion of
phase velocity V; of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for £ = ¢ = 0.01, x = 100
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F

Figure 4.4. Effect of material constant 7 on attenuation factor
A; of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
Yy =¢ =0.01, x = 100
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Figure 4.5.

T - I ]

10 10 10 10
F

Effect of material constant 7 on dispersion of
phase velocity V, of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for vy = ¢ = 0,01, x = 100
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Figure 4.6. Effect of material constant ¢ on attenuation factor
A; of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
y=¢=1, x = 100
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Figure 4.7. Effect of material constant ¢ on dispersion of
phase velocity V4 of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for vy =7z =1, x = 100
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Figure 4.8. Effect of material constant x on attenuation factor
Ay of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
y=z=1, ¢ = 0.01
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Figure 4.9. Effect of material constant X on dispersion of
phase velocity V; of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for y =7 =1, ¢ = 0.01
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Figure 4.10. Effect of material constant y on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
=1, ¢ = 0.01, x = 100
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Figure 4.11.
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Effect of material constant y on dispersion of
phase velocity V_ of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for £z = 1, ¢ = 0.01, x = 100

37



10
1 - 100
z = 0.01
C =
A 107% 4
1078
-12
10 T 1 T
107° 1072 10 10° 10/
F

Figure 4.12.

Effect of material constant Z on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for

Yy =1, ¢ = 0.01, x = 100
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Figure 4.13.
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Effect of material constant r on dispersion of
phase valocity V_ of longitudinal waves in a
temperature-rate dependent thermoviscoelastic
material for vy = 1, ¢ = 0.01, x = 100
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Figure 4.14. Effect of material constant ¢ on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
y=¢=1, x = 100
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Figure 4.15. Effect of material constant ¢ on dispersion of
phase velocity V.. of longitudinal waves in a
temperature~rate dependent thermoviscoelastic
material for vy = ¢ = 1, x = 100
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Figure 4.16. Effect of material constant X on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoviscoelastic material for
y=¢z=1, ¢ = 0.01
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Figure 4.17. Effect of material constant x on dispersion of
phase velocity V_ of longitudinal waves in a
temperature—~rate dependent thermoviscoelastic
material for y =z =1, ¢ = 0.01
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(b)

(c)

(@)

(e)

The attenuation factor 54 and the phase velocity V_
increase while A_ and V+ decrease with the material
constant vy (Figures 4.2, 4.3, 4.10, and 4.11).

The attenuation factors A+ and A_ increase while the
phase velocities V+ and V_ decrease with the material
constant ¢ (Figures 4.4, 4.5, 4.12, and 4.13).

The attenuvation factors A+, A_, and the phase velocities
V+ and V_ are independent of the material constant ¢
(Figures 4.6, 4.7, 4.14, and 4.15).

The attenuation factor A_ increases with the material
constant y while A+, V+, and v_ remain independent of

it (Figures 4.8, 4.9, 4.16, and 4.17).
~3

(2) For the case of ~ 10 < F < 103:

(a)

(o)

In this range of frequency, the effects of the material
constants v, 5, ¢, and x and the frequency F are mixed
and a universal trend cannot be concluded.

A more specific knowledge of the values of the parameters
and range of the frequency is required in order to

understand and establish the response of the material.

3

(3) For the case of F 5 107 :

(a)

The attenuation factor A+ and the phase velocity V+

are independent of the frequency F (Figures 4.2 through
4.9). A_ and V_ are directly proportional to the square
root of F and are independent of all four material
constants vy, 7, ¢, and x as was shown earlier in the
study of high frequency waves (Figures 4.10 through

4.17).
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(b)

(c)

The phase velocity V+ is independent of all but one
parameter. It decreases as the material constant ¢
increases (Figure 4.7).

The attenuation factor A+ increases with 7 as well as
with X, however, it decreases with ¢ and is independent

of v (Figures 4.4, 4.6, and 4.8).
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5. TEMPERATURE-RATE DEPENDENT THERMOELASTIC CONSTITUTIVE RELATIONS

The formulation of Section 3 is quite general. One may wish to
simplify these constitutive relations by reducing the number of
generalized thermodynamic variables in (3.1). Such constitutive
relations must again satisfy the principles of cdntinuum mechanics and
the laws of thermodynamics. One should not expect these simplified
constitutive relations to coincide with those obtained from the
thermoviscoelastic case by simply reducing the number of generalized
thermodynamic variables in (3.16).

Several of these cases were explored during the course of this
research. Among the ones studied the temperature-rate dependent
thermoelasticity offers some interesting results. For such materials

we may write, following the notation of Section 2,

a = a (T, T, Ty p yi,A) '
s = s (T, i, T'A' yi,A) R
e = e (T, i, T’A’ yi,A) ’ (5.1)
B, = B,(T, T, Toar Y5 )
Tag = 2ay (T , Toar ¥5,2) -

Upon application of the second law of thermodynamics and invariance
principle of superposed rigid body motion, we obtain, for an isotropic

temperature-rate dependent thermoelastic material,

a (Tl GAB) ’

1}
I

s = s (T, T, TrAr GAB) ’
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e = e (T’ 'i", T,Al GAB) ? (5.2)

to
I

BA(T' T, T'A' G

an) :

Lai = Pap(Tr Ty Ty

Al Gap) ¥i,B

Following the technique employed in Section 3.3, each of the

)., and e(T, 'i‘r Ty, G

A AB)

response functions a(T, GAB)' s(T, T, T}A, Gap
can always be expressed as a single-valued scalar function of irreducible
integrity basis of its arguments under Q. For the isotropic, temperature-
rate dependent, thermoelastic material under investigation, however, the

irreducible integrity basis for each of the sets (T, GAB) and

(r, T, T,A, GAB) are given by (3.18) and

T ’ T ! GAA ! GAB GBA ! GAB BC GCA
’I‘,A T,A ’ GAB T,A T,B ' GAB GBC T’c T.A ’ (5.3)
respectively.

Similarly, we may form the scalar function Y given by (3.20), and

note that in the present case the expression (3.21) becomes

where LB are the elements (linear in WAB) of the irreducible integrity

basis of T, T, T’A’ GAB' wAB under Q, and HB are single-valued functions

of the irreducible integrity basis of T, %, T’A' G

AB under Q. Thus
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4 -Z—-:B—) . (5.4)
BA

One may also obtain the constitutive expression for the heat flux

) in a similar fashion by forming the scalar

vectorxr BA(T, T, T’M’ GMN

product of BA with an arbitrary vector.

In the following sections we will study the one-dimensional linear
spatial gradient theory of such formulation in a manner similar to that
of Section 4. In addition, we will obtain a class of self-similar

solutions in such a medium.

48




B |

6. THE ONE-DIMENSIONAL LINEAR SPATIAL GRADIENT

TEMPERATURE~RATE DEPENDENT THERMOELASTICITY

Since the one-dimensional theory presented in Section 4 has been

developed in detail, we shall eliminate some of the analogous discussions
to avoid unnecessary repetitions.
6.1. Linear Gradient Assumption
To the first-order approximation in the spatial gradient quantities

we obtain

Py &= eO(T. T) + el(T. T ¢ , (6.1)
B=-«(T, T) Ty ' (6.2)
L =-="7(T) + u(T) € ' (6.3)

where we have already used the results of Section 4 in arriving at the

last equation. Thus, the entropy inequality becomes

. >
T s+ T-0 , (6.4)

where again

v
o
.

Similarly, the free energy may be expressed as

Py @ = Y(T) - (T ¢ . (6.5)

Using Equations (6.1) and (6.5) in (2.7) gives
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_i l- e .
Po § = 3 {eO(T, T)- P(T) + [el(T, ™y + n(T)]Ve} . (6.6)

The  set of expressions (6.l1) through (6.6) and Equations (4.1l) complete
the thermodynamic formulation of the one-dimensional temperature-rate

dependent thermoelastic problem on hand.

6.2. Basic Equations
Substituting the constitutive relations (6.1) through (6.3) in the
equations of motion and balance of energy (4.11l), we obtain to the first

order of approximation,

+n T =0 ,

HoUyx e

Po Yet ~
(6.7)

+ T) u + e T T -k T =0 .

+ *
(e; Xt oT "t = ®oT “tt XX

Comparing the sets (6.7) and (4.12), we note that the former is free of

the third order derivatives of the displacement.

6.3. Characteristic Motions
We shall follow the Hadamard's method and Section 4.3 with the
exception that the second order derivatives of the displacement are no

longer assumed to be continuous across S. Therefore, we have

[T] = [u] = [Tt] = [TX] = [ut] = [uX] =0 , (6.8)

yielding

I
(@]
b

[Ttt] +c [Txt] (6.9)

Il
(@]
-

[TXt] + c [TXX] (6.10)
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[utt] + c [uxt] =0 , (6.11)
fug, ] + ¢ [u,l=0 . (6.12)
The set of Equations (6.7) across S give
Po fuged — v Tug, 1 =0 (6.13)
(eg + m) luy, 1 +epn [T ] -k [Tyl =0 . (6.14)

Therefore, we have obtained six linear algebraic homogeneous equations

in terms of six unknowns [Tt 1, [TXt]' [TXX], [utt]' [uxt], and [uX ].

t X

For nontrivial solutions, the determinant of the cocefficients in (6.9)

through (6.14) must vanish.

2 2

(eOT c - K)(po ¢ -y =0 ,

which is satisfied if
1/2 A

c= won'? Lo (6.15)

or
_ L1728
c = (K/eOT) = c2 o (6.16)

In the thermoelastic medium under consideration, ¢, and c, are the

characteristic speeds of wave propagations. We note that c, is the same

as that given by Equation (4.24) for the thermoviscoelastic case.
Furthermore, c1 is the elastic wave speed which was overwhelmed by the

presence of the viscous terms in the thermoviscoelastic case. We shall
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show that these speeds ¢, and <, correspond to the high frequency

asymptotic phase velocities. We also note that c, tends to infinity,

the classical heat conduction wave speed, as €0t approaches zero.

6.4. Dispersion Relations of Linearized Longitudinal Wave Propagation
in an Initially Unstrained Thermoelastic Material

Following the procedure of Section 4.4, we obtain

- 2 - 2 _
T k T0 + {po(wl) - u k“} uy = o ,
(6.17)
- - . =2 - - .
-+ . - - =
{(eOT eom wi) wi k k73 TO (el + 7m) k wi u, o ,

corresponding to (4.28).

For nontrivial solutions, the determinant of the coefficients must
vanish. Again we consider a real frequency w of propagation in the
positive X-direction, and express the complex wave number by Equation

(4.29), Thus, we have

— - e - = == 2 .
K Uk - {po K wi + u(eOT + eom wi) + T (m + el)} k< wi

- - -
+ po(eOT * et wi) (wi) =0 ., (6.18)

Equation (6.18) is satisfied if

BY C [y + 0+ (0 + 1) FIl HE Fi + (£ + ¢ Fi)(F1)° =0 , (6.19)
where
A w A (/o)
rpl2 , gl O & (6.20)
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are the dimensionless.frequency and complex wave-number with  as a

characteristic frequency of the oscillation; and,

y s ——— , (6.21)

e
Q
=

4 - - ' (6.22)

i

and ¢

(6.23)

are dimensionless material constants defined in a fashion similar to

that of the thermoviscoelastic case. Eguation (6.19) yields

. : 1/2
H, = {gi [y + 2+ (¢ + 1) Fi ¢ J[y +C+ (6 -1 Fil? + 4y Fi]} .

(6.24)
Separating the real and imaginary parts of (6.24),, we have
- 1/2
L (et
Ai = 0 a, = Re (Hi) ’ (6°25)i
A €
v, = 15 F/Im (Hi) ’ (6°26)i
(u/po)

where only propagation in the positive X-direction has been consideregd,

(¥) corresponds to the sign preceding the radical in (6.24),, and H_ is
given by (6.24),.
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6.4.1.

Once again we shall follow Section 4.4.1 to derive certain

Asymptotic Expansions

restrictions on the material constants by means of asymptotic expansions

of A and V.

(1)

(2)

In the case of low frequency waves when F << 1, the asymptotic

expansions are identical to the results obtained for the

thermoviscoelastic case. This is not surprising since the

viscous effects are negligible at low frequency anyway. We

omit the details and state dimensional results of the

attenuation factors and phase velocities:

- - - - =12
ue + m_(e, + m)
0 = I or * "z %1 o] s 0?2 |
2 UK
- - 1/2
c, = I—— LK w1 +0w?
u eOT + wT(n + el)
o 0+ 0(w?) .
- nG+ap P
C_ = [:)l_ + _ ] + O(UJ ) ?
0 Po ©or

which are identical to those given by (4.48) through

despite the differences in y and 7 of the two cases.

(6.27)

(6.28)

(6.29)

(6.30)

(4.51)

The

discussion on decompositon of c_ will follow just the same way.

In the case of high frequency waves when F >> 1, then Equations

(6.24), can be approximated as follows:
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: _ 1/2
H, = {22'-’; [y + ¢ + (¢+1) Fi # (Y+Q|4§¢-1)1|+ Y 4 |- 1] Fi+ ...]) .

(6.31)

The absolute value sign is placed on (¢ - 1) wherever it represents
square root of a real number (¢ - l)2 since we do not know whether ¢ > 1
or ¢ < 1l. If we now separate the real and imaginary parts of (6.31l) for
$ <1 and ¢ > 1, we cbserve that onl{ ¢ < 1 will yield positive values of

A and V. Therefore,

PR S -1
AL Gy YOE ) (6.32)
~ -1
V+ =1+ O(F ) ' (6.33)
provided
>
¢ <1 ’ Yy -0 ’ (6.34)
and
~ 1 Yo -1
Az ——=— (g -L—) +0F ) , (6.35)
2/% -9 ’
v =2so00h , (6.36)
/s
provided
Y9
$>0 and g-7—F>0 . (6.37)
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The latter condition may be re-written

(6.38)

l
v
[
+

™=

The dimensional form of the expressions (6.32) through (6.33) and
(6.35) through (6.36) may be obtained by employing definitions (6.20)

through (6.23) and (6.25) through (6.26).

+ O(w ) , (6.39)

. i -1, _
c, = fom+ 0@ =¢ ’ (6.40)
0
- e T AT+ e.) _
a_ = 5= LI S T I (6.41)
O e Po X T Meg
c_ = 1= . (6.42)

Expressions (6.39) and (6.41) depend on the coefficient of the
temperature-rate 50% as well as on the characteristic frequency .

The speed c, given by (6.40) is the elastic wave speed and c_ given
by (6.42) is the dissipative heat wave speed. Furthermore, these wave

speeds are identical to the characteristic speed c, and <, given by

1
Equations (6.15) and (6.16). A close look at the condition (6.38)

reveals that
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—K 5 g__+ T - 1 ,
€or 9 Po ®or
or
2 2 2
c2 > ¢, + c3 . (6.43)

Inequality (6.43) states that the heat wave speed is always

greater than the elastic wave speed c, and the non-dissipative (low

1

frequency) heat wave speed ¢ This conclusion is best illustrated on

¢
the dispersion curves (Section 6.4.3, pages 66, 68, and 70). Again, the

classical infinite wave speed due to heat conduction may be deduced

by setting e ¢

o equal to zero.

6.4.2. Possible Physical Limitations

We may employ the same technique used in Section 4.4.2 and thus

conclude that for most materials

0 and z >0 . (6.44)

Inequalities (6.44) are in perfect agreement with the results obtained
earlier in the asymptotic expansions. We thus arrive at the following
set of conditions for a stable wave propagation in the temperature rate

dependent thermoelastic material under investigation:

Y 0 '
z>0 ,
(6.45)
1>¢>0 ,
1 Y
4a -> 1+ .
an % z

57



These restrictions were appropriately introduced in the numerical

computations performed to obtain the graphical illustrations of the

dispersion relations.

6.4.3. Numerical Results and Graphs

Logarithmic values of the non-dimensional attenuation factor A and

the non-dimensional phase velocity V were cross-plotted against the

dimensionless freguency F (Figures 6.1 through 6.12). The following

behaviors are observed:

(1) For the case of F £ 1:

(a)

(b)

(c)

(d)

Both attenuation factors A+ and A_, and the phase
velocity V+ increase with the frequency F (Figures
6.1-6.6, 6.7, 6.9, and 6.11). The phase velocity

V_, however, is independent of the frequency (Figures
6.8, 6.10, and 6.12).

The attenuation factor A+ and the phase velocity V_
increase while A_ and V+ decrease with the material
constant vy (Figures 6.1, 6.2, 6.7, and 6.8).

The attenuation factors A+ and A_ increase while the
phase velocities V+ and V_ decrease with the material
constant r (Figures 6.3, 6.4, 6.9, and 6.10).

The attenuation factor A+ and the phase velocities V+
and V_ are independent of the material constant ¢
(Figures 6.5, 6.6, and 6.12). The attenuation factor

A_ decreases with ¢ (Figure 6.11).
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Figure 6.1. Effect of material constant y on attenuation factor
A, of longitudinal waves in a temperature-rate
dependent thermoelastic material for ¢ = 1,
¢ = 0.001
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Figure 6.2,

10 10 10 10

Effect of material constant Y on dispersion of
phase velocity V4 of longitudinal waves in a
temperature-rate dependent thermoelastic
material for z = 1, ¢ = 0.001
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Figure 6.3. Effect of material constant [ on attenuation factor

A, of longitudinal waves in a temperature-rate

dependent thermoelastic material for y = 5,
¢ = 0.8
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Figure 6.4.

10 10 10 10

Effect of material constant z on dispersion of
phase velocity V., of longitudinal waves in a
temperature-rate dependent thermoelastic
material for vy = 5, ¢ = 0.8
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Figure 6.5. Effect of material constant ¢ on attenuation factor
A, of longitudinal waves in a temperature-rate
dependent thermoelastic material for vy = 5, g =1
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Figure 6.6.
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Effect of material constant ) on dispersion of

phase velocity V; of longitudinal waves in a
temperature~rate dependent thermoelastic

material for vy = 5, z = 1

64



10 - -

lO5 108

Figure 6.7. Effect of material constant y on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoelastic material for ¢ = 1,
¢ = 0,001
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Figure 6.8. Effect of material constant Yy on dispersion of
phase velocity V. of longitudinal waves in a
temperature-rate dependent thermoelastic
material for g = 1, ¢ = 0.001
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Figure 6.9. Effect of material constant z on attenuation factor

A_ of longitudinal waves in a temperature-rate
dependent thermoelastic material for y = 500,
¢ = 0.001
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Figure 6.10.

Effect of material constant [ on dispersion of
phase velocity V. of longitudinal waves in a
temperature-rate dependent thermoelastic
material for y = 500, ¢ = 0.001
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Figure 6.11. Effect of material constant ¢ on attenuation factor
A_ of longitudinal waves in a temperature-rate
dependent thermoelastic material for y = 2,
=1
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Figure 6.12.
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Effect of material constant ¢ on dispersion of
phase velocity V_ of longitudinal waves in a
temperature-rate dependent thermoelastic
material for y = 2, £ = 1
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(2) For the case of 1 < F < 10 :

(a)

(b)

This is where the major difference between the
thermoviscoelastic case and the thermoelastic case
exists since there is no interaction between the
material constants y, L, and ¢ as the frequency F
varies (Figures 6.1 through 6.12).

Except for a small decrease in V+ with ¢ (Figure
6.6), the behavior of the other variables remain

unchanged.

(3) For the case of F 3 102:

(a)

(b)

(c)

(@)

Unlike the thermoviscoelastic case, all guantities

A+, V+, A_, and V_ become independent of the frequency
F and approach their asymptotic values (Figures 6.1
through 6.12). We recall that in the thermoviscoelastic
case only A+ and V+ had asymptotic values while A_ and
V_ increased indefinitely with the frequency F.

The attenuation factor A, increases with the material
constant y while A_ decreases. Both V+ and V_ are
independent of Y (Figures 6.1, 6.2, 6.7, and 6.8).

The attenuation factor A_ increases with the material
constant ¢ while A+, V+, and V_ are all independent of

z (FPigures 6.3, 6.4, 6.9, and 6.10)

The attenuation factor A+ increases with the material
constant ¢ while both A_ and V_ decrease. The phase
velocity V+ is independent of ¢ (Figures 6.5, 6.6, 6.11,

and 6.12).
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6.5. A Class of Self-Similar Solutions

In the previous sections we obtained conditions under which the
partial differential equations (6.7) could have meaningful solution and
stable wave propagations would exist. Characteristic speeds and typical
dispersion relations were discussed in detail and analytical expressions
describing the asymptotic behaviors of the attenuation factor and phase
velocity associated with both high and low frequency oscillations were
given.

In this section, we will employ the theory of continuous group of
transformations to seek a class of self-similar solutions of the set
(6.7).

Self-similar solutions are obtained by using appropriate
transformations that reduce a system of partial differential equations
to a system of ordinary differential equations. In general, the
solutions are not unique and success of the method lies greatly on the
choice of the transformation. Hansen (1964) discusses several methods
for obtaining appropriate transformations.

We will follow the theory developed by Morgan (1952) to seek
solutions to the set (6.7). To begin with, we must lock for possible

transformation groups so that the differential forms

- - + 7T
17 P Y T M U T Tp g ’

(6.46)

= + + + hd -
A (e) + ™M up, *egp T ¥ egf Tee = % Tyx -

are conformally invariant under such transformations. The problem may
be simply formulated by using a one-parameter group of transformations

defined by
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(X*, t*, T*, u¥) = (AX,

-m

A e, 2%, a¥ v

(6.47)

where A is the parameter, (m, n, r) are constants; spatial coordinate X

and time t are the independent variables, and temperature T and

digplacement u are the dependent variables.

We also assume that the

coefficients n(T), u(T), eO(T, @), el(T, i), and x (T, i) can be expressed

explicitly in terms of the products of the powers of their respective

arguments.

i
=

T (T)

1

u(T) = E2

eq (T T) = E,
el(T, i) = E4
x (T, i) = E5

where E , 4d_ are constants.

b d

3 o 3 ,
b d

4 D 4 ,
b a

5 o 5 ,

Consistent with our power law transformation, we consider

(6.48)

Substituting (6.48) into (6.46) gives

17 - 5
b2 bl—l
Al pO utt - E2 T uxx + El bl T Tx R
(6.49)
b b d b -1 4
_ 1 q4 4 =3 3
12 = (El T + E4 T T ) uXt + E3 b3 T T Tt +
b d -1 b 4
33 5 75
+ .
E3 d3 T T Ttt E5 T T TXX
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Since we require Al and Az to be conformally invariant under the

group of transformations defined by (6.47) such that

or*  ar*  o2mx  o2px. p2ux  o%ux  2ys
*7 *7 ’ ’ ’ ’
3%X*’ 3t L LN LA

A (x*, tX Tr, u

9X* ot
=3, (x, t: 1, g_;r( cee 227‘2‘; a) a, (%t %-}T;, cee %i-‘zi » (6.50)
we must have
n bl = 2m + ¥ + 1 ’
n b2 =2m + 2 '
n b3 + (m + n) d3 = 2m + 2r ' (6.51)
n b4 + (m + n) d4 =2m+ r+ 1 R

3m-n+ 2r + 2 .

[

n b5 + (m + n) d5

Therefore, bl’ b2, ... , d. are not entirely independent of one another.

5
According to Morgan (1952), the solution to (6.49) may be expressed
in terms of functions f(£) and g(f) of an absolute invariant £ of the

subgroup of the transformations of the independent variables. Therefore,

£ must satisfy the condition
g (X*, t*) =& (X, t) .

There are many ways to choose the form of §; several of which may
yvield satisfactory results. Since we have employed a power law
transformation, we assume that £ is a product of the powers of X and t

also. Without loss of generality, we choose
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E=tX r (6.52)

where m, may be determined by requiring & to remain invariant. Upon

using (6.47), we obtain

t* X*

i
b
c
»

which requires

m =m , (6.53)

to insure absolute invariance. The functions f and g are, as proven
by Morgan (1952), absolute invariants under the complete set of
transformations (6.47). Again, the choice is unlimited as there may
be many forms of £ and g that would yield satisfactory answers.

Following the power law employed so far, we assume

£(g) =T X * ,
(6.54)
m
gE) =ux> .

To determine m2 and m3, we substitute the transformations (6.47) into

(6.54) and set the powers of A equal to zero to insure absolute

invariance of f and g. Thus, we obtain

(6.55)
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Substituting (6.53) into (6.52) and (6.55) into (6.54) gives

m

E=tX ’
T = £(5) X° , (6.56)
u=g() x° .

The system of partial differential equations (6.49), upon using
(6.56) and the restrictions imposed by (6.51), simplify to a system of
ordinary differential equations. It is not the purpose of this treatise
to extract results from this class of self-similar solutions which

satisfy specific initial and boundary conditions. The details of such

an analyis, in general, are very involved.’

As a simple example, let us assume that both m and u are constant.

This requires that

b. =b, =0 . (6.57)

m= -1 and r=1 . (6.58)

Employing (6.56) through (6.58) in Equation (6.49)l gives
(o, - E, £2) g" =0 (6.59)
pO 2 g = ’ -

where (') denotes differentiation with respect to £. The ordinary

differential equation (6.59) is satisfied if

7See, e.g., Burniston and Chang (1970).
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g(g) = Dl g + D2 ’ (6.60)
where D1 and D2 are constants of integration.
Using (6.60) in (6.56)3 and noting that
E=¢t/X , (6.61)
we obtain:
u=D, t+ D, X . (6.62)

This expression denotes that the displacement field is linear and thus

resulting in a constant strain D, and a constant particle velocity D

2 1°
To simplify the Equation (6.49)2, we further assume that
b3 = b4 = b5 =0 . (6.63)
Now the set (6.51l) is satisfied if
n=1 , (6.64)

and d3, d4, d_. are arbitrary but do not vanish simultaneously. Thus,

5
using (6.56) through (6.58) and (6.62) through (6.64) in Equation
(6.49)2, we have the following ordinary differential equation in £:

a, ' d

3 5

] - 2 ] [ -
E3(f ) E5 £ £ f*" =0 . (6.65)

Equation (6.65) is satisfied if f£f' = 0 or £" = 0, both of which yield

a linear temperature distribution; or if f£' # 0, £" # 0, then
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E. d_ £ -E, E°=0 , ' (6.66)

provided that d3 # 0. The ordinary first-order differential equation

(6.66) may be re-written as

L 2%
t —1
£ (E5/E3 d3) £ ’ (6.67)
where 2 satisfies the condition
l(d3 - d5 -1)=1 . (6.68)

1 .
Integrating (6.67) for & # 0, & # - 57 we obtain

1

20+1
2% + 1 +

L
£(g) = (Bg/Ey d,) & Dy (6.69)

where D3 is a constant of integration. The temperature distribution may

be obtained by using (6.69) in (6,56)2:

1 L 22+1
T = D3 X+ EI—:—T-(ES/E3 d3) (t/X) . (6.70)

Explicit expressions may also be obtained for the stress I, heat
flux B, and interhal energy e, by substituting the displacement field
(6.62), the temperature distribution (6.70), and their derivatives, in

the constitutive relations (6.1) through (6.3):
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™M
I

-E, +E D, ,

1 2 72
2. a1 2,295
B =~ Eg {03 - [(Bg/E; d) (£/X)7] ¢ }{<E5/E3 da,) (£/X) } ’
5 %d, o b,
Pp © = E, {(ES/E3 d,) (£/X) } +E, D, {(ES/E3 d,) (£/X) } .

(6.71)

The set (6.71) defines a constant stress temperature-rate dependent heat

conducting thermoelastic medium.
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7. CONCLUSIONS

A thermodynamic theory has been presented describing a class of
temperature-rate dependent materials. Principles of modern axiomatic
continuum mechanics were employed to impose certain restrictions on the
constitutive relations.

One-dimensional linear-gradient theories for the thermoviscoelastic
and thermoelastic cases satisfying the general theory were presented and
compared. It was shown that there is only one characteristic speed
associated with the thermoviscoelastic case and is due to the temperature
rate effect. The thermoelastic medium, on the other hand, possesses an
additional characteristic speed of the elastic wave. This difference is
believed to be due to the overwhelming viscous effects which override
the elasticity of the material at high frequency of oscillation in a
thermoviscoelastic medium.

Dispersion relations were presented in dimensionless forms and
analytical expressions for the asymptotic behaviors of the attenuation
factors and phase velocities were derived for each case. It was
demonstrated that the high frequency asymptotic phase velocities coincide
with the characteristic speeds obtained earlier. Physical limitations
were placed on the dimensionless material constants by using criteria
for stable wave propagations at all frequency levels and by drawing
analogy with results of the classical thermodynamics.

A class of self-similar solutions was obtained for the thermoelastic
problem using the method of continuous group of transformations.

Explicit expressions were obtained for the constitutive relations in

the case of a constant-stress, heat-conducting medium.
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8. LIST OF SYMBOLS

Similarity parameter appearing in (6.47).
Non-dimensional attenuation factor.
Heat flux.

Heat flux vector.

Internal heat generation per unit mass per unit time.

Integration constants (J i, 2, 3).

Constant coefficients (j 1, 2, e« , 5)a

Non-dimensional frequency.
Body force per unit mass.

Functions of irreducible integrity basis.
Cauchy-Green strain tensor.
Elements (linear in WAB) of irreducible integrity basis.

Non~-dimensional complex wave-number.

Functions of irreducible integrity basis.

Jacobian of the deformation gradient.

Functions of transformation variables and parameter.
Elements (linear WAB) of irreducible integrity basis.
Piola stress tensor.

Full orthogonal group.

Time dependent proper orthogonal transformations.

Symmetry group of material.
A scalar-valued function.
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s ) Elements of the symmetry group S.

AB

T Absolute temperature.

To A complex amplitude coefficient.

'I‘ij A second-order tensor-valued function.
V(F) Non-dimensional phase velocity.

Vi A vector-valued function.

X Spatial coordinate.

YA Reference coordinate system.

a Specific Helmholtz free energy per unit mass.
bi Constant powers (i = 1, 2, ... , 5).

c Wave velocity.

di Constant powers (i = 3, 4, 5).

e Specific internal energy per unit mass.

ei(T, f) Coefficients appearing in the expression for the internal

energy.
f(&) An absolute invariant function defined by (6.56).
g{(&) An absolute invariant function defined by (6.56).
i Square root of (-1).
k Complex wave-number.
L Constant power defined by Equation (6.68).
m Constant power.
m, Constant powers (i = 1, 2, 3).
n Constant power.
P, Position vector.
q Particle velocity.
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Constant power.
Specific entropy per unit mass.
Time.

Original time of reference.

Displacement field.

Complex amplitude coefficient.

Spatial coordinate.

Spatial coordinate system.

Coefficient of heat conductivity.
Kirchoff-Piola longitudinal stress.

Kirchoff-Piola stress tensor.

Any field variable.
A scalar invariant given by (3.20)

An arbitrary second-order symmetric tensor.

A characteristic frequency.
Attenuation factor.
Non-dimensional material constant.

Kronecker delta.

Lagrangian strain.

Non-dimensional material constant.

Coefficient appearing in the expression for the stress.

Differential forms defined by Equations (6.46),

Coefficient appearing in the expression for the stress.

Absolute invariant of the subgroup of transformations defined

by (6.52).
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T (T)

¥ (T)

Coefficient appearing in the expression for the stress.
Density.

Initial density.

Non-dimensional material constant.
Non-dimensional material constant.

Coefficient appearing in the expression for the specific
Helmholtz free energy.

Frequency.
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